Abstract

Background and objectiveBreast lesions segmentation is an important step of computer-aided diagnosis system. However, speckle noise, heterogeneous structure, and similar intensity distributions bring challenges for breast lesion segmentation. MethodsIn this paper, we presented a novel cascaded convolutional neural network integrating U-net, bidirectional attention guidance network (BAGNet) and refinement residual network (RFNet) for the lesion segmentation in breast ultrasound images. Specifically, we first use U-net to generate a set of saliency maps containing low-level and high-level image structures. Then, the bidirectional attention guidance network is used to capture the context between global (low-level) and local (high-level) features from the saliency map. The introduction of the global feature map can reduce the interference of surrounding tissue on the lesion regions. Furthermore, we developed a refinement residual network based on the core architecture of U-net to learn the difference between rough saliency feature maps and ground-truth masks. The learning of residuals can assist us to obtain a more complete lesion mask. ResultsTo evaluate the segmentation performance of the network, we compared with several state-of-the-art segmentation methods on the public breast ultrasound dataset (BUSIS) using six commonly used evaluation metrics. Our method achieves the highest scores on six metrics. Furthermore, p-values indicate significant differences between our method and the comparative methods. ConclusionsExperimental results show that our method achieves the most competitive segmentation results. In addition, we apply the network on renal ultrasound images segmentation. In general, our method has good adaptability and robustness on ultrasound image segmentation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call