Abstract

C:N ratios play critical roles in determining the stability and performance of the wastewater treatment reactor. Here, we investigated bacterial and archaeal community composition, diversity, association networks, and functional profiles in livestock and poultry breeding wastewater (LPBW) with C:N gradients from 7.8 to 18.9 using 16S rRNA gene amplicon sequencing. Highest total nitrogen (TN) and total phosphorous (TP) removal rates were detected in the wastewater with high C:N ratios, while bacterial and archaeal communities in the wastewater varied across the four C:N ratios. Proteobacteria, Acidobacteria, and Bacteroides were generally the dominant phyla in the wastewater across treatments, with Candidatus Saccharibacteria being more enriched in the wastewater with high C:N ratios. Association network analysis showed that specific bacterial and archaeal taxa likely have similar metabolic activities allowing them to respond similarly to different C:N ratios. Bacteroidetes, Actinobacteria, Verrucomicrobia, Candidatus Saccharibacteria, and Proteobacteria were the keystone species found in the networks. Most dominant bacterial functions in the wastewater were chemoheterotrophy and aerobic chemoheterotrophy. Nitrite respiration, nitrous oxide denitrification, nitrate denitrification and nitrite denitrification were up-regulated with increased C:N ratios. Our findings provide new insights into our understanding of the compositions, potential associations, and predicted functional profiles of the microbial community in LPBW treated with different C:N ratios.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call