Abstract
AbstractThe c-myc proto-oncogene encodes a short-lived transcription factor that plays an important role in cell cycle regulation, differentiation and apoptosis. c-myc is often rearranged in tumors resulting in deregulated expression. In addition, mutations in the coding region of c-myc are frequently found in human lymphomas, a hot spot being the Thr58 phosphorylation site, a mutation shown to enhance the transforming capacity of c-Myc. It is, however, still unclear in what way this mutation affects c-Myc activity. Our results show that proteasome-mediated turnover of c-Myc is substantially impaired in Burkitt's lymphoma cells with mutated Thr58 or other mutations that abolish Thr58 phosphorylation, whereas endogenous or ectopically expressed wild type c-Myc proteins turn over at normal rates in these cells. Myc Thr58 mutants expressed ectopically in other cell types also exhibit reduced proteasome-mediated degradation, which correlates with a substantial decrease in their ubiquitination. These results suggest that ubiquitin/proteasome-mediated degradation of c-Myc is triggered by Thr58 phosphorylation revealing a new important level of control of c-Myc activity. Mutation of Thr58 in lymphoma thus escapes this regulation resulting in accumulation of c-Myc protein, likely as part of the tumor progression.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.