Abstract

Epigenetic factors play critical roles in prostate cancer (PCa) development. However, how they contribute to neuroendocrine differentiation (NED) and castration-resistant PCa (CRPC) is not fully understood. Using bioinformatics and biochemical approaches to analyze cell-based models of NED and CRPC, we found a cluster of epigenetic factors whose expression is downregulated during NED and upregulated in CRPC (i.e. follow a Down-Up pattern). Two histone demethylases within this cluster, PHF8 and KDM3A, are post-transcriptionally regulated by c-MYC through miR-22, which targets both PHF8 and KDM3A. We also found that the c-MYC/miR-22/PHF8 axis is downstream of androgen receptor (AR) signaling in CRPC cells. The co-expression of PHF8 with AR in clinical CRPC samples, normal mouse prostate, and adenocarcinomas of the prostate during PCa progression in a transgenic (TRAMP) mouse model supports the connection between PHF8 and AR. Knockdown of PHF8 impedes cell cycle progression in CRPC cells and has more profound effects on their growth than on the parental LNCaP cell line. Furthermore, PHF8 knockdown sensitizes LNCaP-Abl cells to the AR antagonist enzalutamide. Our data reveal novel mechanisms that underlie the regulation of PHF8 and KDM3A during NED and in CRPC, and support the candidacy of PHF8 as a therapeutic target in CRPC.

Highlights

  • Prostate cancer (PCa) is the most common but second lethal malignancy in American men, with 180,890 new cases and 26,120 deaths estimated in 2016 [1]

  • We found that the c-MYC/miR22/PHF8 axis is downstream of androgen receptor (AR) signaling in castrationresistant PCa (CRPC) cells

  • Identifying novel epigenetic factors that play important roles during prostate cancer (PCa) progression is critical for the development of new drug targets for the treatment of CRPC

Read more

Summary

Introduction

Prostate cancer (PCa) is the most common but second lethal malignancy in American men, with 180,890 new cases and 26,120 deaths estimated in 2016 [1]. Androgen-deprivation therapy (ADT), the most common treatment, initially results in PCa regression; two to three years after treatment castration-resistant prostate cancer (CRPC) develops [2]. Evidence is accumulating that neuroendocrine-like (NE-like) cells, which express neuronal genes such as chromogranin A (CHGA), enolase 2 (ENO2) and synaptophysin (SYP), are present during PCa progression [7]. These cells can arise via neuroendocrine differentiation (NED), a process that can be induced by ADT and by the administration of therapeutic agents that target dividing cells, e.g. docetaxel [8]. A deeper understanding of androgen-dependent www.impactjournals.com/oncotarget and -independent mechanisms that promote NED, and CRPC, is essential for identifying novel therapeutic targets for the treatment of CRPC

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call