Abstract

Background: A variety of receptors may be involved in the pathogenesis of absence seizures. The c-Met receptors have a critical role in modulating the GABAergic interneurons and creating a balance between excitatory and inhibitory neurotransmission, sensorimotor gating, and normal synaptic plasticity. Objectives: This study aimed to assess the changes of the c-Met receptor during the appearance of absence attacks in the experimental model of absence epilepsy. Methods: A total of 48 animals were divided into four groups of two- and six-month-old WAG/Rij and Wistar rats. Epileptic WAG/Rij rats showing SWP in electrocorticogram (ECoG) were included in the epileptic group. The two-month-old WAG/Rij rats as well as two- and six-month-old Wistar rats not exhibiting SWP in ECoG were selected as the non-epileptic. Gene (RT-PCR) and protein expression (western blotting) of c-Met receptors as well as c-Met protein distribution (immunohistochemistry) in the somatosensory cortex and hippocampus were assessed during seizure development of the absence attacks. Results: According to the study findings, a lower c-Met gene and protein expression, as well as a lower protein distribution, were observed in the hippocampus (P < 0.001, P < 0.05, and P < 0.001, respectively) and cortex (P < 0.01, P < 0.001 and P < 0.001, respectively) of the two-month-old WAG/Rij rats compared to the same-age Wistar rats. Moreover, the data revealed a reduction of hippocampal and cortical c-Met protein expression (P < 0.001, for both) in six-month-old WAG/Rij rats compared to two-month-old ones. Six-month-old WAG/Rij rats had a lower cortical c-Met gene (P < 0.05) and protein expression (P < 0.001) as well as lower hippocampal and cortical protein distribution (P < 0.05 and P < 0.001) than the same-age Wistar rats. Conclusions: In sum, the c-Met receptor was found to play a significant role in the development of absence epilepsy. This receptor, therefore, may have been considered as an effective goal for absence seizure inhibition.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call