Abstract

Membrane order is a biophysical characteristic dependent on cellular lipid makeup. Cells regulate the membrane structure as it affects membrane-bound protein activity levels and membrane stability. Spatial organization of membrane lipids, such as lipid rafts, is a proposed theory that has been indirectly measured through polarity-sensitive fluorescent dyes. C-Laurdan is one such dye that penetrates plasma and internal membranes. C-Laurdan is excited by a single 405nm photon and emits in two distinct ranges depending on membrane order. Herein, we present a protocol for staining HEK293t cells with C-Laurdan and acquiring ratiometric images using a revised ImageJ macro and confocal microscopy. An example figure is provided depicting the effects of methyl-β-cyclodextrin, known to remove lipid rafts through cholesterol sequestration, on HEK293t cells. Further image analysis can be performed through region of interest (ROI) selection tools.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call