Abstract
IntroductionReceptor tyrosine kinases have been implicated in various vascular remodeling processes and cardiovascular disease. However, their role in the regulation of vascular tone is poorly understood. Herein, we evaluate the contribution of c-Kit signaling to vasoactive responses. MethodsThe vascular reactivity of mesenteric arteries was assessed under isobaric conditions in c-Kit deficient (KitW/W−v) and littermate control mice (Kit+/+) using pressure myography. Protein levels of soluble guanylyl cyclase beta 1 (sGCβ1) were quantified by Western blot. Mean arterial pressure was measured after high salt (8% NaCl) diet treatment using the tail-cuff method. ResultsSmooth muscle cells (SMCs) from c-Kit deficient mice showed a 5-fold downregulation of sGCβ1 compared to controls. Endothelium-dependent relaxation of mesenteric arteries demonstrated a predominance of prostanoid vs. nitric oxide (NO) signaling in both animal groups. The dependence on prostanoid-induced dilation was higher in c-Kit mutant mice than in controls, as indicated by a significant impairment in vasorelaxation with indomethacin with respect to the latter. Endothelium-independent relaxation showed significant dysfunction of NO signaling in c-Kit deficient SMCs compared to controls. Mesenteric artery dilation was rescued by addition of a cGMP analog, but not with a NO donor, indicating a deficiency in cGMP production in c-Kit deficient SMCs. Finally, c-Kit deficient mice developed higher blood pressure on an 8% NaCl diet compared to their control littermates. Conclusionc-Kit deficiency inhibits NO signaling in SMCs. The existence of this c-Kit/sGC signaling axis may be relevant for vascular reactivity and remodeling.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Biochemical and biophysical research communications
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.