Abstract

The development of potential probes to identify molecular conformation is essential in organic and biological chemistry. In this work, we investigated a site-specific C-H stretching vibration as a conformational probe for a model compound, 1,1,3,3,3-deuterated n-propanol (CD3CH2CD2OH), using stimulated photoacoustic Raman spectroscopy in the gas phase and conventional spontaneous Raman spectroscopy in the liquid state. Along with quantum chemistry calculations, the experiment shows that the CH2 symmetric stretching mode at the β-carbon position is very sensitive to the conformational structure of n-propanol and can serve as a new probe for all five of its conformers. Compared with the O-H stretching vibration, a well-established conformational sensor for n-propanol, the Cβ-H stretching vibration presented here shows better conformational resolution in the liquid state. Furthermore, using this probe, we investigated the conformational preference of n-propanol in pure liquid and in dilute water solution. It is revealed that in pure liquid, n-propanol molecules prefer the trans-OH conformation, and in dilute water solution, this preference is enhanced, indicating that the water molecules play a role of further stabilizing the trans-OH n-propanol conformers. This leads to conformational evolution that n-propanol molecules with gauche-OH structure are transferred to the trans-OH structure upon diluting with water. These results not only provide important information on structures of n-propanol in different environments, but also demonstrate the potential of the C-H stretching vibration as a new tool for conformational analysis. This is especially important when considering that hydrocarbon chains are structural units in organic and biological molecules.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.