Abstract
C–H insertion reactions between different substrates and diazo reagents were catalyzed by tetratolylporphyrinato methyliridium (Ir(TTP)CH3). The highest yields were achieved for reactions between the bulky diazo reagent methyl 2-phenyldiazoacetate (MPDA) and substrates containing electron-rich C–H bonds. An intermediate metalloporphyrin complex was identified as a metal–carbene complex, Ir(TTP)(═C[Ph]CO2CH3)(CH3) (4), using 1H NMR and UV/vis absorption spectroscopy. The presence of 4 was further supported by computationally modeling the absorption spectra with time-dependent DFT (6-31G(d,p)/SBKJC basis set, PBE0 functional). Kinetic studies for C–H insertion reactions using different substrates showed substantial differences in the rate of MPDA consumption, suggesting that carbene transfer is rate-limiting. Furthermore, primary kinetic isotope effects of 3.7 ± 0.3 and 2.7 ± 0.4 were measured using toluene and cyclohexane, respectively. These data are consistent with a mechanism that involves direct C–H in...
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.