Abstract

The crystal structures of the tetraphenylborates of the dabcoH+, guanidinium (MeCN solvate), and biguanidinium cations are shown to contain a variety of C-H···H-C dihydrogen (DB) bonds of nominally zero polarity, as well as a variety of N-H···N, C-H···N, N-H···Ph, and C-H···Ph hydrogen (HB) bonds. These intermolecular bonds have been characterized topologically after multipole refinement of the structures. The coexistence of the DBs and HBs in each of the structures makes it possible to establish their relative strength hierarchy. It also illustrates the importance of the DBs in satisfying the tendency of these structures to maximize the total intermolecular bonding engagement. To compare the above DBs with other DBs, the results of an extensive set of MP2/6-31G(d,p) calculations (supplied by I. Alkorta) were analyzed for reference correlations between the bond-critical parameters. Thus, for an X-H···H-Y bond, the difference Δε(H)m between the Mulliken charges on the H atoms in the uncomplexed X-H and H-Y components correlates quite well with the X-H···H-Y parameters and can be used for predicting the topological strength of an X-H···H-Y bond. The use of the difference Δε(H)c in the bond does not appear to change the correlation significantly; closer correlations are observed when the amount of charge transferred on formation of the H···H bond is used instead of Δε(H)m or Δε(H)c. Bonding interactions are obtained even between like or symmetry-related H atoms as a consequence of induced-dipole interactions, which accounts for the existence of the above intermolecular C-H···H-C bonds with d(H···H) = 2.18–2.57 Å, electron density at the bond-critical point of ~0.05–0.08 e/Å3, and a rough estimate of the H···H binding energy of ~1-5 kcal/mol. Examination of the bond-critical parameters of X-H···H-Y bonds also suggests a criterion of stability of these bonds with respect to the transition from non-shared (closed-shell) X-H···H-Y interaction to covalent (shared-shell) X···H-H···Y interaction. This transition appears to be discontinuous.Key words: bond-critical parameters, bond topology, dihydrogen bonds, hydrogen bonds, organoammonium tetraphenylborates.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call