Abstract

A temperature downshift results in stabilized secondary structure formation in mRNA that halts translation to which Escherichia coli responds by synthesizing a set of proteins termed as cold shock proteins (Csps). To cope with the sudden temperature drop, gene expression patterns are reprogrammed to induce Csps at the cost of other proteins. Out of the nine homologous proteins in the CspA family, CspA, CspB, CspG, and CspI have major roles in protecting the cell under a cold shock. Additionally, a subset of Csps has conferred the organism an ability to adapt to various stresses along the lines of nutrient deprivation, oxidative, heat, acid, and antibiotic stresses. Stressors like C group translational inhibitors stall the translational apparatus and produce a response similar to that observed under a temperature downshift. Conditions set by the antibiotic therefore elicit a cold shock response and induce the major Csps, thereby pointing out to a common mechanism existing between the two. In the current review, we briefly describe the induction of E. coli Csps under an antibiotic stress acquired from data published previously and help establish the role of Csps in protecting the cell against the inducing agents and as a participant in the organisms' complex stress response network.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.