Abstract

Diabetes mellitus is a metabolic disorder characterized by hyperglycemia, which can be counteracted by inhibition of α-glucosidase and α-amylase, both involved in the carbohydrate metabolism. Fourteen C-glucosidic ellagitannins and three galloylated glucoses were studied as potential α-glucosidase and α-amylase inhibitors. Most of the compounds were found to be moderate inhibitors of α-amylase, but potent inhibitors of α-glucosidase, showing low-micromolar IC50 values, far lower than that of the antidiabetic drug acarbose. This selectivity can be an advantage for their possible application as functional food ingredients with anti-diabetic properties because strong α-amylase inhibition generally causes undesired side effects. The best inhibitors were selected for further studies. Intrinsic fluorescence measurements confirmed their high affinity towards α-glucosidase, highlighting a static quenching mechanism. Circular dichroism measurements and kinetics of inhibition indicated that the most active C-glucosidic ellagitannin roburin D (RobD) is a competitive inhibitor, whereas α-pentagalloylglucose (α-PGG) acts as a mixed-type inhibitor.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call