Abstract

Various C-glucopyranosyl-1,2,4-triazolones were designed as potential inhibitors of glycogen phosphorylase. Syntheses of these compounds were performed with O-perbenzoylated glucose derivatives as precursors. High temperature ring closure of N1-carbamoyl-C-β-D-glucopyranosyl formamidrazone gave 3-β-D-glucopyranosyl-1,2,4-triazol-5-one. Reaction of N1-tosyl-C-β-D-glucopyranosyl formamidrazone with ClCOOEt furnished 3-β-D-glucopyranosyl-1-tosyl-1,2,4-triazol-5-one. In situ prepared β-D-glucopyranosylcarbonyl isocyanate was transformed by PhNHNHBoc into 3-β-D-glucopyranosyl-1-phenyl-1,2,4-triazol-5-one, while the analogous 1-(2-naphthyl) derivative was obtained from the unsubstituted triazolone by naphthalene-2-boronic acid in a Cu(II) catalyzed N-arylation. Test compounds were prepared by Zemplén deacylation. The new glucose derivatives had weak or no inhibition of rabbit muscle glycogen phosphorylase b: the best inhibitor was 3-β-D-glucopyranosyl-1-(2-naphthyl)-1,2,4-triazol-5-one (Ki = 80 µM).

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call