Abstract

Cells deficient in c-Fos are hypersensitive to ultraviolet (UV-C) light. Here we demonstrate that mouse embryonic fibroblasts lacking c-Fos (fos−/−) are defective in the repair of UV-C induced DNA lesions. They show a decreased rate of sealing of repair-mediated DNA strand breaks and are unable to remove cyclobutane pyrimidine dimers from DNA. A search for genes responsible for the DNA repair defect revealed that upon UV-C treatment the level of xpf and xpg mRNA declined but, in contrast to the wild type (wt), did not recover in fos−/− cells. The observed decline in xpf and xpg mRNA is due to impaired re-synthesis, as shown by experiments using actinomycin D. Block of xpf transcription resulted in a lack of XPF protein after irradiation of fos−/− cells, whereas the XPF level normalized quickly in the wt. Although the xpg mRNA level was reduced, the amount of XPG protein was not altered in c-Fos-deficient cells after UV-C, due to higher stability of the XPG protein. The data suggest a new role for c-Fos in cells exposed to genotoxic stress. Being part of the transcription factor AP-1, c-Fos stimulates NER via the upregulation of xpf and thus plays a central role in the recovery of cells from UV light induced DNA damage.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.