Abstract

"Splitting" of circadian activity rhythms in Syrian hamsters maintained in constant light appears to be the consequence of a reorganized SCN, with left and right halves oscillating in antiphase; in split hamsters, high mRNA levels characteristic of day and night are simultaneously expressed on opposite sides of the paired SCN. To visualize the splitting phenomenon at a cellular level, immunohistochemical c-Fos protein expression in the SCN and brains of split hamsters was analyzed. One side of the split SCN exhibited relatively high c-Fos levels, in a pattern resembling that seen in normal, unsplit hamsters during subjective day in constant darkness; the opposite side was labeled only within a central-dorsolateral area of the caudal SCN, in a region that likely coincides with a photo-responsive, glutamate receptor antagonist-insensitive, pERK-expressing cluster of cells previously identified by other laboratories. Outside the SCN, visual inspection revealed an obvious left-right asymmetry of c-Fos expression in the medial preoptic nucleus and subparaventricular zone of split hamsters killed during the inactive phase and in the medial division of the lateral habenula during the active phase (when the hamsters were running in their wheels). Roles for the dorsolateral SCN and the mediolateral habenula in circadian timekeeping are not yet understood.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.