Abstract

We aimed at identifying novel regulators of skin wound healing (WH), in an epidermal scratch WH assay, by a small interfering RNA (siRNA) silencing approach. Several transcription factors have been previously reported to affect wound repair. We here show that gene silencing of the transcription factor CAAT enhancer-binding protein γ (C/EBPγ), STAT3, REL, RELA, RELB, SP1, and NFkB impaired WH in vitro, in keratinocytes, whereas E2F and CREBBP silencing accelerated the WH process. We further characterized C/EBPγ, as its silencing yielded the maximal impairment (52.2 ± 12.5%) of scratch wounding (SW). We found that C/EBPγ silencing inhibited both EGF- and serum-induced keratinocyte migration, whereas C/EBPγ overexpression enhanced cell migration to EGF and to serum via the EGFR. Further, C/EBPγ silencing impaired scratch-induced Y1068 and Y1173 EGFR phosphorylation, as well as Y118 paxillin phosphorylation, key molecules regulating cell migration and epidermal WH. Moreover, C/EBPγ levels were induced in keratinocytes, following both SW and EGF stimulation. C/EBPγ siRNA silencing in vivo impaired WH at 3, 5, 7, and 14 days following excisional wounding in mice inhibited both re-epithelialization and granulation tissue formation, and induced a decrease of arteriole number. In conclusion, we here report that C/EBPγ positively regulates wound repair both in vitro and in vivo, at least in part, by affecting EGFR signaling.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.