Abstract

AbstractEven in the era of ABL tyrosine kinase inhibitors, eradication of chronic myeloid leukemia (CML) stem cells is necessary for complete cure of the disease. Interferon-α (IFN-α) has long been used for the treatment of chronic-phase CML, but its mechanisms of action against CML stem cells remain unclear. We found that IFN-α upregulated CCAAT/enhancer binding protein β (C/EBPβ) in BCR-ABL–expressing mouse cells by activating STAT1 and STAT5, which were recruited to a newly identified 3′ distal enhancer of Cebpb that contains tandemly aligned IFN-γ–activated site elements. Suppression or deletion of the IFN-γ–activated site elements abrogated IFN-α–dependent upregulation of C/EBPβ. IFN-α induced differentiation and exhaustion of CML stem cells, both in vitro and in vivo, in a C/EBPβ-dependent manner. In addition, IFN-α upregulated C/EBPβ and induced exhaustion of lineage− CD34+ cells from CML patients. Collectively, these results clearly indicate that C/EBPβ is a critical mediator of IFN-α–induced differentiation and exhaustion of CML stem cells.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call