Abstract

HfC-SiC modified C/C composites containing in situ formed Si-HfC-HfSi2 ablation resistant layer and SiC oxidation resistant layer were successfully prepared by reactive melt infiltration (RMI) combined with gaseous silicon infiltration (GSI). A comparative study was conducted on the anti-oxidation and anti-ablation performance of the C/C-HfC-SiC composites with GSI (noted as RG-CHS) and without GSI (noted as R-CHS). After oxidation at 1500 °C for 200 min, the oxide film of RG-CHS remained intact. The mass and linear ablation rates decreased from 1.31 mg/s and 7.36 μm/s to 0.12 mg/s and −0.22 μm/s after GSI process, respectively. The introduction of low melting point phases and reducing surface defects can improve the high temperature oxidation resistance and plasma ablation resistance of the composites.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call