Abstract
Transition-metal-catalyzed carbon-carbon (C-C) bond formation is an important reaction in pharmaceutical and organic chemistry. However, the reaction process is composed of multiple steps and is expensive owing to the presence of transition metals. This study proposes a lithium-catalyzed C-C coupling reaction of two benzene molecules (Bz) to form a biphenyl molecule, which is a transition-metal-free reaction, based on ab initio and direct ab initio molecular dynamics (AIMD) calculations. The static ab initio calculations indicate that the reaction of two Bz molecules with Li- ions (reactant state, RC) can form a stable sandwiched complex (precomplex), where the Li- ion is sandwiched by two Bz molecules. The complex formation reaction can be expressed as 2Bz + Li - → Bz(Li -)Bz, where the C-C distance between the Bz rings is 2.449 Å. This complex moves to the transition state (TS) via the structural deformation of Bz(Li-)Bz, where the C-C distance is shortened to 2.118 Å. The barrier height was calculated to be -9.9 kcal/mol (relative to RC) at the MP2/6-311++G(d,p) level. After TS, the C(sp3)-C(sp3) single bond was completely formed between the Bz rings (the C-C bond distance was 1.635 Å) (late complex). After the dissociation of H2 from the late complex, a biphenyl molecule was formed: the C(sp2)-C(sp2) bond. The calculations suggest that the C-C bond coupling of Bz occurred spontaneously from 2Bz + Li-, and biphenyl molecules were directly formed without an activation barrier. Direct AIMD calculations show that the C-C coupling reaction also takes place under electron attachment to Li(Bz)2: Li(Bz)2 + e- → [Li-(Bz)2]ver → precomplex → TS → late complex, where [Li-(Bz)2]ver is the vertical electron capture species of Li(Bz)2. Namely, the C-C coupling reaction spontaneously occurred in Li(Bz)2 owing to electron attachment. Similar C-C coupling reactions were also observed for halogen-substituted benzene molecules (Bz-X, X = F and Cl). Furthermore, this study discusses the mechanism of C-C bond formation in electron capture based on the theoretical results.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.