Abstract

Although there have been many studies revealing that biomarker genes for early cancer detection can be found in biomolecular networks, no proper tool exists to discover the cancer biomarker genes from various biomolecular networks. Accordingly, we developed a novel Cytoscape app called C-Biomarker.net, which can identify cancer biomarker genes from cores of various biomolecular networks. Derived from recent research, we designed and implemented the software based on parallel algorithms proposed in this study for working on high-performance computing devices. We tested our software on various network sizes and found the suitable size for each running mode on CPU or GPU. Interestingly, using the software for 17 cancer signaling pathways, we found that on average 70.59% of the top three nodes residing at the innermost core of each pathway are biomarker genes of the cancer respectively to the pathway. Similarly, by the software, we also found 100% of the top ten nodes at both cores of Human Gene Regulatory (HGR) network and Human Protein-Protein Interaction (HPPI) network are multi-cancer biomarkers. These case studies are reliable evidence for performance of cancer biomarker prediction function in the software. Through the case studies, we also suggest that true cores of directed complex networks should be identified by the algorithm of R-core rather than K-core as usual. Finally, we compared the prediction result of our software with those of other researchers and confirmed that our prediction method outperforms the other methods. Taken together, C-Biomarker.net is a reliable tool that efficiently detects biomarker nodes from cores of various large biomolecular networks. The software is available at https://github.com/trantd/C-Biomarker.net.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call