Abstract
ABSTRACT Cloudy conditions reduce the utility of optical imagery for crop monitoring. New constellations of satellites – including the RADARSAT Constellation Mission (RCM) and Sentinel-1A/B, both available under free and open data policies – can be used to create stacks of dense seasonal C-band Synthetic Aperture Radar (SAR) data. Yet to date, the contribution of SAR imagery to operational crop mapping is often limited to that of a gap-filler, compensating for optical data obscured by clouds. The Joint Experiment for Crop Assessment and Monitoring (JECAM) SAR Inter-Comparison Experiment is a multi-year, multi-partner project focused on evaluating methods for SAR-based crop classification. Stacks of dense time-series SAR imagery, from RADARSAT-2 and Sentinel-1 satellites, were acquired for 10 sites located in six countries. Decision Tree (DT) and Random Forest (RF) classification methodologies were applied to these SAR data-stacks, as well as to data-stacks of optical only, and optimized SAR/optical data combinations. For the dense time-series SAR stacks, overall classification accuracies above 85% and 80% were obtained for 6 of 10 and 8 of 10 sites, respectively. For maize, the SAR-only data delivered user’s and producer’s accuracies greater than 90% for half the sites. For soya bean, accuracies greater than 80% were reported for 5 of 9 sites and classification accuracies were greater than 80% for wheat on half the sites. Classification results were influenced by the mix and number of agriculture classes present at each site, the available SAR imagery, as well as the training and validation data sets for individual crop types. These results have important operational implications for regions of the world dominated by cloudy conditions and the lack of adequate amounts of optical imagery to support satellite-based crop monitoring.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.