Abstract

A catalytic method to prepare highly substituted 1,3-dienes from two different alkenes is described using a directed, palladium(II)-mediated C(alkenyl)-H activation strategy. The transformation exhibits broad scope across three synthetically useful substrate classes masked with suitable bidentate auxiliaries (4-pentenoic acids, allylic alcohols, and bishomoallylic amines) and tolerates internal nonconjugated alkenes, which have traditionally been a challenging class of substrates in this type of chemistry. Catalytic turnover is enabled by either MnO2 as the stoichiometric oxidant or co-catalytic Co(OAc)2 and O2 (1 atm). Experimental and computational studies were performed to elucidate the preference for C(alkenyl)-H activation over other potential pathways. As part of this effort, a structurally unique alkenylpalladium(II) dimer was isolated and characterized.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.