Abstract
To optimize skin pigmentation in order to help body prevention against UV radiation, the mechanism of melanin pigment transfer from melanocytes to keratinocytes must be elucidated. Melanin transfer to keratinocytes requires specific recognition between keratinocytes and melanocytes or melanosomes. Cell surface sugar-specific receptor (membrane lectin) expression was studied in human C 32 melanoma cells, an amelanotic melanoma, by flow cytometry analysis of neoglycoprotein binding as an approach to the molecular specificity. Sugar receptors on melanocytes are mainly specific for α- l-fucose. Their expression is enhanced upon treatment by the diacylglycerol analogue 1-oleoyl-2-acetylglycerol, which can induce melanin synthesis in amelanotic human melanoma cells in a dose-dependent manner. Flow cytometry analyses showed a small-sized population of vesicles distinguishable from large cells by their fluorescence properties upon neoglycoprotein binding. Sorting indicated that the small-sized subpopulation is composed of vesicles produced by melanocytic cells. Upon vesicle formation, a selective concentration of sugar receptors specific for 6-phospho-β- d-galactosides appears in the resulting melanocytic vesicles. Vesicles are recognized and taken up by cultured keratinocytes and a partial inhibitory effect was obtained upon cell incubation in the presence of neoglycoproteins, indicating a possible participation of sugar receptors in this recognition. The validity for such a model to help in understanding the natural melanin transfer by melanosomes is confirmed by electron microscopy, which demonstrates the presence of melanin inside keratinocytic cells upon incubation with melanocytic vesicles.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.