Abstract

In order to solve the deficiency of Hermite interpolation spline with second-order elliptic variation in shape control and continuity, c-2 continuous cubic Hermite interpolation spline with second-order elliptic variation was designed. A set of cubic Hermite basis functions with two parameters was constructed. According to this set of basis functions, the three-order Hermite interpolation spline curves were defined in segments 02, and the parameter selection scheme was discussed. The corresponding cubic Hermite interpolation spline function was studied, and the method to determine the residual term and the best interpolation function was given. The results of an example show that when the interpolation conditions remain unchanged, the cubic Hermite interpolation spline curves not only reach 02 continuity, but also can use the parameters to control the shape of the curves locally or globally. By determining the best values of the parameters, the cubic Hermite interpolation spline function can get a better interpolation effect, and the smoothness of the interpolation spline curve is the best.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.