Abstract
Abstract The importance of unpaired spin distribution in the Co(II)-Dopamine complex in aqueous solution, was investigated. From the analysis of the H-1 and C-13 isotropic shifts and with the aid of an INDO M.O. calculation on a dopamine radical a prevalent σ-type delocalization mechanism of the spin density was evidentiated, even if a contribution from π-electrons cannot be completely excluded. The analysis of the spin-lattice relaxation rates revealed the importance of ligand-centered dipolar interactions. The introduction of the spin densities, calculated from the INDO method, in the modified Solomon-Bloembergen equation, allowed to estimate the correlation time of the complex which can be identified with the electronic relaxation time.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Advances in Molecular Relaxation and Interaction Processes
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.