Abstract

The complete nucleotide sequence of the erythromycin resistance plasmid pNG2 from the human pathogen Corynebacterium diphtheriae S601 was determined. The plasmid has a total size of 15,100 bp and contains at least 17 coding regions. Comparative genomics identified conserved motifs within replication initiator proteins of corynebacterial plasmids and a novel nucleotide sequence feature, termed 22-bp box, located downstream of the repA gene. The erythromycin resistance determinant erm(X) is flanked by inverted repeats of the novel insertion sequence IS3504, which may be responsible for a spontaneous deletion of the antibiotic resistance gene region. Furthermore, pNG2 encodes a putative conjugative relaxase, a membrane protein of the natural resistance-associated macrophage protein (Nramp) family and a protein with Nudix hydrolase signature. Expression of the predicted coding regions of pNG2 in Escherichia coli JM109 was demonstrated by reverse transcription-polymerase chain reaction (RT-PCR) assays. The detailed annotation of the entire pNG2 sequence provided genetic information regarding its molecular evolution and its role in dissemination of antibiotic resistance genes by horizontal gene transfer.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call