Abstract

Conformational searching is a core task in inverse molecular kinematics. Algorithmic improvements affecting either the speed or quality of conformational searching will have a profound impact on applications including ligand-receptor docking, ab initio prediction of protein structure, and protein folding. In this paper, we investigate a specific geometry-constrained conformational searching problem, where some feature atoms have pre-specified target positions. Using Bézier subdivision, we present a method to locate and approximate the solutions of the equations derived from constraints on the feature atoms. The conformations corresponding to these solutions are all the conformations satisfying the target constraints. Three implementations of the subdivision method taking advantage of the sparsity of the coefficients of the polynomial equations are presented and the results are compared and contrasted.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.