Abstract

The emergence of numerous consensus algorithms for distributed systems has resulted from the swift advancement of blockchain and its related technologies. Consensus algorithms play a key role in decentralized distributed systems, because all nodes in the system need to reach a consensus on requests or commands through consensus algorithms. In a distributed system where nodes work together to reach consensus, there may be Byzantine nodes present. The emergence of Byzantine nodes will affect the consensus of nodes in the distributed system. Therefore, tolerating Byzantine nodes in a distributed system and then reaching a consensus is an essential function of a consensus algorithm. So far, many Byzantine fault-tolerant (BFT) consensus algorithms have emerged, and there are correspondingly many methods to improve the performance of these algorithms. In order to allow researchers to have a clearer understanding of the existing methods, this paper systematically investigated and studied the research progress of the current Byzantine fault-tolerant consensus algorithm. The scope of the research ranged from the classic Byzantine consensus algorithm to some of the latest Byzantine consensus algorithms. The articles were classified according to the methods used to improve the Byzantine consensus algorithm. Through classification and centralized analysis and discussion, we achieved a clearer understanding of the development of Byzantine consensus algorithms and, at the same time, clarified the advantages and disadvantages of this type of method and the latest research progress using this method. At the end of this article, an in-depth discussion and analysis is also presented. By analyzing the impact of the use of these methods on the performance of the BFT consensus algorithm, it is proposed that future research can be improved.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call