Abstract

The byte stream is widely used in malware detection due to its independence of reverse engineering. However, existing methods based on the byte stream implement an indiscriminate feature extraction strategy, which ignores the byte function difference in different segments and fails to achieve targeted feature extraction for various byte semantic representation modes, resulting in byte semantic confusion. To address this issue, an enhanced adversarial byte function associated method for malware backdoor attack is proposed in this paper by categorizing various function bytes into three functions involving structure, code, and data. The Minhash algorithm, grayscale mapping, and state transition probability statistics are then used to capture byte semantics from the perspectives of text signature, spatial structure, and statistical aspects, respectively, to increase the accuracy of byte semantic representation. Finally, the three-channel malware feature image is constructed based on different function byte semantics, and a convolutional neural network is applied for detection. Experiments on multiple data sets from 2018 to 2021 show that the method can effectively combine byte functions to achieve targeted feature extraction, avoid byte semantic confusion, and improve the accuracy of malware detection.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.