Abstract

Reductive elimination from partially or completely oxidized metal centers is a vital step in a myriad of carbon-carbon and carbon-heteroatom bond-forming reactions. One strategy for promoting otherwise challenging reductive elimination reactions is to oxidize the metal center using a two-electron oxidant (that is, from M((n)) to M((n+2))). However, many of the commonly used oxidants for this type of transformation contain oxygen, nitrogen, or halogen moieties that are subsequently capable of participating in reductive elimination, thus leading to a mixture of products. In this Minireview, we examine the use of bystanding F(+) oxidants for addressing this widespread problem in organometallic chemistry and describe recent applications in Pd(II) /Pd(IV) and Au(I) /Au(III) catalysis. We then briefly discuss a rare example in which one-electron oxidants have been shown to promote selective reductive elimination in palladium(II)-catalyzed C-H functionalization, which we view as a promising future direction in the field.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.