Abstract

Ultraviolet (UV) irradiated cells release factors that result in varied responses by non-irradiated cells via bystander effects (BE). The UV-BE is dependent on the cell types involved and on the wavelength of the radiation. Using conditioned medium from UVA-irradiated A375 human melanoma cells (UVA-CM), UVA-bystander response was evaluated on the viability of naïve A375 cells. UVA-CM treatment itself did not alter cell viability; however, UVA-CM treated bystander cells were more resistant to the lethal action of UVA, UVB, UVC or H2O2. Effects of UVA-CM on cell proliferation, mechanism of cell death, DNA damage, malondialdehyde formation, generation of reactive oxygen species (ROS) and antioxidant status were studied in A375 cells. We observed that UVA-CM triggered antioxidant defenses to elicit protective responses through elevation of antioxidant enzyme activities in cells, which persisted until 5 h after exposure to UVA-CM. This was possibly responsible for decreased generation of ROS and diminished DNA and membrane damage in cells. These bystander cells were resistant to killing when exposed to different genotoxic agents. Damaged nuclei, induction of apoptosis and autophagic death were also lowered in these cells. The influence of UVA-CM on cancer stem cells side population was assessed. Highlights: UVA radiation induced bystander effects in A375 cells Damage by genotoxicants is suppressed due to lower ROS generation on UVA-CM treatment UVA-CM exposure enhanced higher activities of CAT and GPx Resistance to genotoxic agents in such cells was due to elevated antioxidant defence UVA-bystander phenomenon was a protective response

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.