Abstract
In the field of gene therapy using retroviral vectors, it appears impossible to introduce a foreign gene into all target cells. Therefore adjacent cell killing, the so-called bystander effect, caused by genetically modified cells provides therapeutic advantages for gene therapy against cancers. We retrovirally transduced the herpes simplex virus thymidine kinase (HSV- tk) gene into murine and rat hepatocellular carcinoma (HCC) cells. These HSV- tk gene-transduced HCC cells were cocultured with the corresponding parental cells in the presence of ganciclovir, at a concentration not at all cytotoxic to the parental cells. When parental HCC cells were cocultured with their HSV- tk gene-transduced counterparts at a high density at which most cells were in contact with one another, they were markedly eliminated. Conversely, when cocultured at a low density at which none of the cells were in contact, a weak but statistically significant bystander effect was observed. Addition of lysates of HSV- tk gene-transduced cells in the presence of ganciclovir did not cause any killing of parental cells. Furthermore, media conditioned by transduced cells with ganciclovir exhibited weak cytotoxic effects on parental cells. These results indicate that cell-cell contact plays a major causative role in the bystander effect and that minor contributors to this phenomenon are some cytotoxic substance released from transduced cells. Importantly, the bystander effect was induced in vivo as well as in vitro. When mixtures of transduced and untransduced HCC cells were implanted into the flank region of mice, intraperitoneal ganciclovir administration considerably inhibited tumor development, indicating the feasibility of gene therapy with HSV- tk gene and ganciclovir against HCC.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.