Abstract

Multidrug resistance (MDR) presents a major obstacle for the successful chemotherapy of cancer. Its emergence during chemotherapy is attributed to a selective process, which gives a growth advantage to MDR cells within the genetically unstable neoplastic cell population. The pleiotropic nature of clinical MDR poses a great difficulty for the development of treatment strategies that aim at blocking MDR at the tumor cell level. Targeting treatment to the nonmalignant vascular network—the lifeline of the tumor—is a promising alternative for the treatment of drug-resistant tumors. The present study demonstrates that MDR in cancer can be successfully circumvented by photodynamic therapy (PDT) using an antivascular treatment protocol. We show that, although P-glycoprotein-expressing human HT29/MDR colon carcinoma cells in culture are resistant to PDT with Pd-bacteriopheophorbide (TOOKAD), the same treatment induces tumor necrosis with equal efficacy (88% vs 82%) in HT29/MDR-derived xenografts and their wild type counterparts, respectively. These results are ascribed to the rapid antivascular effects of the treatment, supporting the hypothesis that MDR tumors can be successfully eradicated by indirect approaches that bypass their inherent drug resistance. We suggest that with progress in ongoing clinical trials, TOOKAD-PDT may offer a novel option for local treatment of MDR tumors.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.