Abstract

Available computational fluid dynamics (CFD) predictions of pressure distributions in the vertical bypass flow between blocks in a prismatic gas-cooled reactor (GCR) have been analyzed to deduce apparent friction factors and loss coefficients for nuclear engineering systems and network codes. Calculations were performed for vertical gap spacings “s” of 2, 6, and 10 mm — representing 1, 3, and 5 mm in a GCR design, horizontal gaps between the blocks of 2 mm and two flow rates, giving a range of vertical gap Reynolds numbers ReDh of about 40–5300. The present focus is on the examination of the flow in the vertical gaps. Horizontal gaps are treated in CFD calculations but their flows are not examined. Laminar predictions of the fully developed friction factor ffd were about 3–10% lower than the classical infinitely wide channel. In the entry region, the local apparent friction factor was slightly higher than the classic idealized case, but the hydraulic entry length Lhy was approximately the same. The per cent reduction in flow resistance was greater than the per cent increase in flow area at the vertical corners of the blocks. The standard k–ϵ turbulence model was employed for flows expected to be turbulent. Its predictions of ffd and flow resistance were significantly higher than direct numerical simulations (DNS) for the classic case; the value of Lhy was about 30 gap spacings. Initial quantitative information for entry coefficients and loss coefficients for the expansion–contraction junctions between blocks is also presented. The present study demonstrates how CFD predictions can be employed to provide integral quantities needed in systems and network codes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.