Abstract

The system code RAMONA, as well as a recently developed BWR reduced order model (ROM), are employed for the stability analysis of a specific operational point of the Leibstadt nuclear power plant. This has been done in order to assess the ROM’s applicability and limitations in a quantitative manner. In the context of a detailed local bifurcation analysis carried out using RAMONA in the neighbourhood of the chosen Leibstadt operational point, a bridge is built between the ROM and the system code. This has been achieved through interpreting RAMONA solutions on the basis of the physical mechanisms identified in the course of applying the ROM. This leads, for the first time, to the identification of a subcritical Poincaré–Andronov–Hopf (PAH) bifurcation using a system code. As a consequence, the possibility of the so-called correspondence hypothesis is suggested to underline the relationship between a stable (unstable) limit cycle solution and the occurrence of a supercritical (subcritical) PAH bifurcation in the modeling of boiling water reactor stability behaviour.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.