Abstract

Butyrate exerts potent anti-tumor effects by inhibiting cancer cell growth and inducing apoptosis. However, the molecular mechanisms mediating these effects remain largely unknown. Using the Caco-2 cell line, a well established model of colon cancer cells, our data show that butyrate induced apoptosis (maximum 79%) is mediated via activation of the caspase-cascade. A key event was the proteolytic activation of caspase-3, triggering degradation of poly-(ADP-ribose) polymerase (PARP). Inactivation of caspase-3 with the tetrapeptide zDEVD-FMK completely inhibited the apoptotic response to butyrate. In parallel, butyrate potently up-regulated the expression of the pro-apoptotic protein bak, without changing Caco-2 cell bcl-2 expression. Butyrate-induced Caco-2 cell apoptosis was completely blocked by the addition of cycloheximide, indicating the necessity of protein synthesis. However, when this inhibitor was added at a time point where bak expression was already enhanced (12 - 16 h after butyrate stimulation), it failed to protect Caco-2 cells against apoptosis. Taken together, these data provide evidence that the molecular events involved in butyrate induced colon cancer cell apoptosis include the caspase-cascade and the mitochondrial bcl-pathway.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.