Abstract

Dendritic cells (DCs) play a key role in immune function through antigen presentation by MHC and CD1, as well as cytokine production that shapes the immune response. Here we report that butyrate, a histone deacetylase inhibitor, inhibits the functional differentiation of human monocyte-derived DCs. Mature DCs were generated from monocytes in the presence of granulocyte macrophage colony-stimulating factor (GM-CSF) and interleukin-4 (IL-4), followed by 2 day LPS stimulation. Butyrate treatment throughout the culture period inhibited the expression of CD1 molecules, but not on CD83, CD86, and MHC molecules. The suppression was exerted at protein and mRNA levels. Butyrate-treated immature DCs also showed decreased expression of CD1 molecules. Moreover the butyrate-treated immature DCs showed lower production of IL-12 p40 and IL-6 in response to lipopolysaccharides and induced less Th1 cells in allogenic mixed lymphocyte reactions. Our results imply that histone acetylation is involved in regulating immune responses through regulating functional differentiation of DC. Thus HDAC may be one of the targets for controlling the immune response.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.