Abstract

A facile solution process is developed, through which butterfly wings are taken as natural photonic crystal (PhC) scaffolds to control the synthesis and assembly of CdS nanocrystallites, and thus to achieve novel optical nanocomposites with unobtainable PhC features. Practically, the original wings can be activated by an EDTA/DMF suspension to first serve as in-situ reactive substrates for CdS seeds, and then provide the PhC structures for the following heterogeneous deposition of CdS nanoparticles (nano-CdS). The obtained nano-CdS covering precisely preserves the efficient structure details of the natural PhCs from macro-scale down to ∼100 nm. In the resulting nano-CdS/butterfly wing composites, the assembly patterns of nano-CdS can be controlled at two levels: one is the PhC structures (>100 nm) decided by the wing scale hierarchy, the other is the nano-CdS small clusters (<100 nm) distributed on the PhC structures. Such a combination of nano-CdS and butterfly wings should create novel optoelectronic properties, and relevant ideas could inspire the investigation of PhC materials.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.