Abstract

Polyploidization has been suggested as one of the most common mechanisms for plant diversification. It is often associated with changes in several morphological, phenological and ecological plant traits, and therefore has the potential to alter insect-plant interactions. Nevertheless, studies evaluating the effect of plant polyploidy on interspecific interactions are still few. We investigated pre-dispersal seed predation by the butterfly Anthocharis cardamines in 195 populations of two ploidy levels of the herb Cardamine pratensis (tetraploid ssp. pratensis, 2n = 30 vs. octoploid ssp. paludosa, 2n = 56-64). We asked if differences in incidence and intensity of predation among populations were related to landscape characteristics, plant ploidy level and population structure. The incidence of the seed predator increased with increasing plant population size and decreasing distance to nearest population occupied by A. cardamines. The intensity of predation decreased with increasing plant population size and was not affected by isolation. Probability of attack decreased with increasing shading, and intensity of predation was higher in grazed than in non-grazed habitats. The attack intensity increased with increasing mean flower number of plant population, but was not affected by flowering phenology. Individuals in tetraploid populations suffered on average from higher levels of seed predation, had higher mean flower number, were less shaded and occurred more often in grazed habitats than octoploid populations. When accounting for differences in habitat preferences between ploidy levels there was no longer a difference in intensity of predation, suggesting that the observed differences in attack rates among populations of the two ploidy levels are mediated by the habitat. Overall, our results suggest that polyploidization is associated with differentiation in habitat preferences and phenotypic traits leading to differences in interspecific interaction among plant populations. This, in turn, may facilitate further divergence of ploidy levels.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call