Abstract

BackgroundBeer is the most popular alcoholic beverage worldwide. In the manufacture of beer, various by-products and residues are generated, and the most abundant (85% of total by-products) are spent grains. Thanks to its high (hemi)cellulose content (about 50% w/w dry weight), this secondary raw material is attractive for the production of second-generation biofuels as butanol through fermentation processes.ResultsThis study reports the ability of two laccase preparations from Pleurotus ostreatus to delignify and detoxify milled brewer’s spent grains (BSG). Up to 94% of phenols reduction was achieved. Moreover, thanks to the mild conditions of enzymatic pretreatment, the formation of other inhibitory compounds was avoided allowing to apply the sequential enzymatic pretreatment and hydrolysis process (no filtration and washing steps between the two phases). As expected, the high detoxification and delignification yields achieved by laccase pretreatment resulted in great saccharification. As a fact, no loss of carbohydrates was observed thanks to the novel sequential strategy, and thus the totality of polysaccharides was hydrolysed into fermentable sugars. The enzymatic hydrolysate was fermented to acetone-butanol-ethanol (ABE) by Clostridium acetobutilycum obtaining about 12.6 g/L ABE and 7.83 g/L butanol within 190 h.ConclusionsThe applied sequential pretreatment and hydrolysis process resulted to be very effective for the milled BSG, allowing reduction of inhibitory compounds and lignin content with a consequent efficient saccharification. C. acetobutilycum was able to ferment the BSG hydrolysate with ABE yields similar to those obtained by using synthetic media. The proposed strategy reduces the amount of wastewater and the cost of the overall process. Based on the reported results, the potential production of butanol from the fermentation of BSG hydrolysate can be envisaged.

Highlights

  • Beer is the most popular alcoholic beverage worldwide

  • In agreement with our previous results, P. ostreatus laccases were able to both detoxify and delignify brewer’s spent grains (BSG) removing up to 94% of phenolic compounds, important inhibitors of microorganisms used in the ABE fermentation

  • Laccase pretreatment of BSG was successfully carried out by applying the sequential protocol developed in our previous work

Read more

Summary

Introduction

In the manufacture of beer, various by-products and residues are generated, and the most abundant (85% of total by-products) are spent grains. Significant steps towards a biobased economy have been taken in order to reduce the emissions of greenhouse gas (GHG) and the dependence from fossil resources. In this frame, the large amounts of waste/residue biomasses from agrofood industries are a key resource to produce both biobased products and second-generation fuels in order to improve the eco-sustainability of productions. In the manufacture of beer, various by-products and residues are generated, and the most abundant (85% of total by-products) are brewer’s spent grains (BSG) [3]. BSG is a lignocellulosic material containing sugars (cellulose and hemicellulose), proteins and minerals, its chemical composition depends on several factors, such as cultivation conditions, harvest time, the variety of the barley used, as well as the conditions used for malting and mashing [4]

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call