Abstract
A new class of nonplanar metalla-aromatics, diiron complexes bridged by a 1,3-butadienyl dianionic ligand, were synthesized in high yields from dilithio reagents and two equivalents of FeBr2 . The complexes consist of two antiferromagnetically coupled high-spin FeII centers, as revealed by magnetometry, Mössbauer spectroscopy, and DFT calculations. Furthermore, experimental (X-ray structural analysis) and theoretical analyses (NICS, ICSS, AICD, MOs) suggest that the complexes are aromatic. Remarkably, this nonplanar metalla-aromaticity is achieved by an uncommon σ-type overlap between the ligand p and metal d orbitals, in sharp contrast to the intensively studied planar aromatic systems featuring delocalized π-type bonding. Specifically, the σ-type interaction between the two Fe 3dxz orbitals and the butadienyl π orbital results in the formation of a six-electron conjugated system and hence enables the aromatic character.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.