Abstract
This paper presents a theoretical framework for the business decision-making process of the power generators as price takers when considering the participation of energy storage. The framework assesses rational valuation, optimal sales strategies, and hedging options for power plants with and without a gross sales constraint. The valuation and optimal sales strategy problems are analyzed using a risk-neutral pricing approach, dynamic programming principles, and the trinomial tree model suitable for the regime switching model. The formulation of a price risk hedging scheme flexible and widely used over-the-counter electricity derivative, the electricity contract for difference, as a tool for hedging electricity spot price risk. The minimum variance hedge ratio and its corresponding hedging efficiency formula are derived. In the section of numerical simulations, we first use the EM algorithm to calibrate the electricity spot model based on electricity spot price data of Nord Pool. Numerical simulations are then conducted on the operational decision-making of power generators under three different forms of energy storage. The results of the simulations provide a basis for power generators to evaluate the real-time value of power plants, to select optimal real-time power sales, and to determine the optimal timing of power plant transfer and storage methods.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.