Abstract
ABSTRACT Supply chains are prone to several operational and disruption risks. In order to design a resilient supply chain network capable of responding to such potential risks suitably, this paper proposes a novel framework for the business continuity-inspired resilient supply chain network design (BCRSCND) problem, which includes three steps. First, four resilience dimensions including Anticipation, Preparation, Robustness, and Recovery are considered to quantify the resilience score of each facility using a multi-criteria decision-making technique and considering a comprehensive set of resilience strategies. In the second step, the critical processes and their business continuity metrics (which are vital for supply chain continuity), are identified. The outputs of the first two steps provide the inputs of a novel two-stage mixed possibilistic-stochastic programing (TSMPSP) model. The model aims to design a multi-echelon, multi-product resilient supply chain network under both operational and disruption risks. The proposed TSMPSP model allows decision makers to incorporate their risk attitudes into the design process. After converting the original TSMPSP model into the crisp counterpart, several sensitivity analyses are conducted on different features of hypothetical disruptions (i.e. their severity, likelihood and location) and DM’s risk attitudes from which useful managerial insights are provided.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.