Abstract

This study proposes a bus prioritisation strategy at signalised intersections to enhance public transport reliability and attractiveness. Nowadays, bus prioritisation at intersections is conducted according to a first-come, first-served principle, lacking compatibility with future vehicle-to-infrastructure communication. A framework for prioritising buses based on their delay and occupancy was developed and tested in a SUMO microscopic traffic simulation subnetwork of the city of Ingolstadt. Buses are prioritised using a 25-level hierarchy. Four degrees of prioritisation interventions are implemented based on bus priority levels with signal cycles adjusted to advance preferred green phases. The timing of the prioritisation is based on an Estimated Time of Arrival (ETA) prediction that considers past speed and travel time data as well as bus stops that are on the way to the intersection. The prioritisation logic was tested in simulation scenarios with on- and off-peak conditions and with several buses requesting priority and varying degrees of priority. The results show that the developed prioritisation concept works, and prioritised buses benefit from a strong reduction in their travel times (up to 87 %) and number of stops. Buses with lower priority levels may experience deterioration in their travel time (up to 126 %) when arriving at the same time as a high-priority bus, but considering the fewer affected passengers and smaller delay, this seems acceptable.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call