Abstract

Probabilistic Timing Analysis (PTA) reduces the amount of information needed to provide tight WCET estimates in real-time systems with respect to classic timing analysis. PTA imposes new requirements on hardware design that have been shown implementable for single-core architectures. However, no support has been proposed for multicores so far. In this paper, we propose several probabilistically-analysable bus designs for multicore processors ranging from 4 cores connected with a single bus, to 16 cores deploying a hierarchical bus design. We derive analytical models of the probabilistic timing behaviour for the different bus designs, show their suitability for PTA and evaluate their hardware cost. Our results show that the proposed bus designs (i) fulfil PTA requirements, (ii) allow deriving WCET estimates with the same cost and complexity as in single-core processors, and (iii) provide higher guaranteed performance than single-core processors, 3.4x and 6.6x on average for an 8-core and a 16-core setup respectively.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call