Abstract

ABSTRACT In recent years, several analytic models have demonstrated that simple assumptions about halo growth and feedback-regulated star formation can match the (limited) existing observational data on galaxies at $z \gtrsim6$. By extending such models, we demonstrate that imposing a time delay on stellar feedback (as inevitably occurs in the case of supernova explosions) induces burstiness in small galaxies. Although supernova progenitors have short lifetimes (∼5–30 Myr), the delay exceeds the dynamical time of galaxies at such high redshifts. As a result, star formation proceeds unimpeded by feedback for several cycles and ‘overshoots’ the expectations of feedback-regulated star formation models. We show that such overshoot is expected even in atomic cooling haloes, with halo masses up to ∼1010.5 M⊙ at z ≳ 6. However, these burst cycles damp out quickly in massive galaxies, because large haloes are more resistant to feedback so retain a continuous gas supply. Bursts in small galaxies – largely beyond the reach of existing observations – induce a scatter in the luminosity of these haloes (of ∼1 mag) and increase the time-averaged star formation efficiency by up to an order of magnitude. This kind of burstiness can have substantial effects on the earliest phases of star formation and reionization.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.