Abstract
<italic xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">Burst</i> is a common pattern in data streams which is characterized by a sudden increase in terms of arrival rate followed by a sudden decrease. Burst detection has attracted extensive attention from the research community. To detect bursts accurately in real time, we propose a novel sketch, namely BurstSketch, which consists of two stages. Stage 1 uses the technique Running Track to select potential burst items efficiently. Stage 2 monitors the potential burst items and captures the key features of burst pattern by a technique called Snapshotting. We further propose an optimization, namely Dynamic Buckets, which can improve the accuracy of BurstSketch. We provide theoretical error bounds for Stage 1, Stage 2 and the optimized version. Experimental results show that, compared with the strawman solution, Burstsketch achieves 2.00 to 11.63 times higher F1 score, and 1.56 times higher throughput. We also integrate BurstSketch into Apache Flink, and show that using BurstSketch can be faster than simply using the built-in APIs provided by Apache Flink.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE Transactions on Knowledge and Data Engineering
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.