Abstract

We propose a mathematical model of a spiking neural network (SNN) that interacts with an active extracellular field formed by the brain extracellular matrix (ECM). The SNN exhibits irregular spiking dynamics induced by a constant noise drive. Following neurobiological facts, neuronal firing leads to the production of the ECM that occupies the extracellular space. In turn, active components of the ECM can modulate neuronal signaling and synaptic transmission, for example, through the effect of so-called synaptic scaling. By simulating the model, we discovered that the ECM-mediated regulation of neuronal activity promotes spike grouping into quasi-synchronous population discharges called population bursts. We investigated how model parameters, particularly the strengths of ECM influence on synaptic transmission, may facilitate SNN bursting and increase the degree of neuronal population synchrony.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.