Abstract

Measurement of slow EEG activity and burst suppression are the main tasks in monitoring the effects of anaesthestics with EEG, which is often done with commercial univariate indexes such as BIS. The aim of this study was to describe the characteristics of burst suppression EEG during propofol anaesthesia using scalp electrodes and depth electrodes in the subthalamic nucleus. Specifically, we describe the electrical fields of the three EEG patterns we have previously described: the sharp wave, the burst and the spindle. We recorded the EEG of three Parkinson patients during propofol anaesthesia from the scalp electrodes and the depth electrode implanted in the subthalamic nucleus for treating parkinsonism. (1) The slow waves of bursts recorded from all surface electrodes on scalp or neck with depth electrode reference are positive and have the highest amplitude in frontal electrodes, suggesting synchronous generation in the whole cerebral cortex. (2) The sharp wave and spindles have the highest amplitude at vertex. They are opposite in polarity in vertex and depth electrodes when referred to the neck electrode, suggesting generation in the sensorimotor cortex. Recording simultaneously EEG from the depth and scalp electrodes shows that bursts and their slow wave oscillations are synchronous in the whole cortex while spindles and sharp waves are produced by the sensorimotor cortex. The amplitude of slow waves recorded with surface electrodes is equal to the difference of the wave at two electrodes and therefore only a small part of that generated by the cortex.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.