Abstract

Abstract Pressure vessels (PVs) are widely used in the energy industry. Accurate burst pressure is critical to structural design and safe operation for both thin and thick-walled PVs. The traditional strength theories utilized a single-parameter material property, such as the yield stress or the ultimate tensile stress (UTS) to develop failure models for determining the yield or ultimate pressure carrying capacity in the PV design. The UTS-based Barlow formula is a typical burst pressure model developed from the Tresca strength theory that provides the basis for developing regulation rules and failure models for different industry design codes, such as ASME BPVC, ASME B31.3, and ASME B31G, among others. In order to reduce the conservatism of the Tresca strength model, ASME BPVC recently adapted failure models developed from the von Mises strength theory for the PV design and analysis. It has been commonly accepted that the burst pressure of pipelines depends on the UTS and strain hardening exponent, n, of the pipeline steel. An average shear stress yield theory was thus developed, and the Zhu-Leis solution of burst pressure was obtained as a function of UTS and n for thin-walled line pipes. Experiments showed that the Zhu-Leis solution provides an accurate, reliable prediction of burst pressure for defect-free thin-walled pipes. In order to extend the Zhu–Leis solution to thick-walled cylindrical PVs, this paper defined three new flow stresses, modified the traditional strength theories, and obtained three new burst pressure solutions that are valid for both thin and thick-walled cylindrical vessels. The proposed flow stresses are able to describe the tensile strength and the plastic flow response of PVs for a strain hardening steel. The associated strength theories were then developed in terms of the Tresca, von Mises, and Zhu-Leis yield criteria. From these new strength theories, three burst pressure solutions were obtained for thick-walled cylinders, where the von Mises solution is an upper bound prediction, the Tresca solution is a lower bound prediction, and the Zhu-Leis solution is an intermediate prediction of burst pressure for thick-walled cylinders. Finally, the proposed burst pressure solutions were evaluated and validated by two large datasets of full-scale burst tests for thick-walled tubes and for thin-walled pipes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call